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Fourier Analysis

. Let H be the real Hilbert transform given by

(Hf)(z) =CPV /00 a‘;f(—y),dy.
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Calculate Hx[a’b] for —oco < a < b < o0.
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. Let Y be a closed linear subspace of L'(R"). Assume that Y« L}(R*) C Y. If f €Y,
then show that 7, f € Y where (75f)(z) = f(x — s).

Proof. Let u run through an approximate identity. If f € Y, then us x f € Y. But
usx f = (ux f)s = 75 f, since u* f — f, and therefore 7,f € Y. H

"JUQ ~
. Let fi(z) = 2%¢~ % for k = 0,1,2,.... and z € R. Find a relation between f;,(s)
and s f,(s).

—
—

Proof. Note that fry1(z) = z fr(z). Recall that e’%(s) — \27re~% and anf(z)(s) =

z"d—f(s) Using these facts, we have
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. Let ¢ € L*(R) satisfy fdw\|
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dk: S
= V2r ik+1—e_7(—s)
dk 2
= —V2 @s[z @e 7}

= V27 isfi(s).
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(a) Let f: R — R be in L{ (R) with compact support. If the maximal function
M f is in L*(R), then show that f = 0.

(b) Let g € L*(R). If Mg € L'(R), then show that ¢ = 0. Note that g is not

assumed to have compact support.

Proof. Let 0 # f € Li .(R) with supp(f) C Bg for some R > 0 and ||f||} > 0. Note
that for |z| > R,
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In general, we can approximate f by f1,~r and there exists I such that

1f = flusrlL <e

Then
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> m - ¢ L (R).
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Yap(t) = %1“?). For f € L'(R) N L*(R), define (W f)(a,b) = (f,ap). Show

that o 4
a 2 _ 2
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< 00. Define 1) for a > 0 and b € R by

Proof.
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The expression between the first pair of brackets can be viewed as (27)% times the
Fourier transform of F,(z) = |a|2 f(z)i(az); the second has a similar interpretation as

(27)2 times the complex conjugate of F,(z). From equation (1) and by the unitarity

of the Fourier transform it follows that
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= 27?/d$f($)f($)/—|1/}(ax)|2 (By Fubini’s theorem)




